Analysis of the performance of an All-optical Network using Arrayed Waveguide and Fiber Bragg Grating Demultiplexers

Autores

DOI:

https://doi.org/10.53660/CONJ-682-816

Palavras-chave:

: Arrayed Waveguide Grating, Fiber Bragg Grating, Wavelength Division Multiplexing

Resumo

This work aims to discuss a study of numerical simulations of the performance of arrayed waveguide grating (AWG) and fiber Bragg grating (FBG) demultiplexers in a fiber optical network in a special class of fiber denominated fiber of photonic crystal (PCF) considering the dispersive and non-linear effects. The proposed method is based on numerical simulations in a wavelength division multiplexing (WDM) network configuration in PCF. For the simulation and analysis, the commercial OptiGrating software was used, a versatile numerical tool used to model integrated devices that incorporate FBG and OptiSystem software to simulate fiber propagation with non-linear and dispersive characteristics. The analysis of the performance of the systems was done through a comparison between the values obtained in terms of Bit Error Rate (BER) and Quality Factor (Q Factor) in a dense WDM system with spacing between 50 GHz channels, and 12 Gbit/s transmission rate. The results show that the FBG demultiplexer in terms of the BER and the Q factor for the PCF was the one that obtained the best performance, when compared the FBG demultiplexer with SMF and the AWG demultiplexer obtained excellent results for both fibers.

Downloads

Não há dados estatísticos.

Referências

AGRAWAL, G. P. Fiber-optic communication systems. John Wiley & Sons, 2012.

ALI, A. H.; KADHIM, S. A.; KAZR, K. A.; LATEEF, A. T. Simulation and performance analysis of a fiber communication system based on FBG as dispersion compensator. Int J New Technol Res, 4, p. 62-66, 2018.

BENAMEUR, Sarah; AUPETIT-BERTHELEMOT, Christelle; KANDOUCI, Malika. Impact Of Optical Demultiplexers Based On Fiber Bragg Gratings On DWDM transmission system. In: First International Conference on Electrical Engineering and Control Applications ICEECA'2012. 2012.

BENAMEUR, S.; KANDOUCI, M.; AUPETIT-BERTHELEMOT, C.; JOTI, A. Dense Wavelength Division (De) Multiplexers Based on Fiber Bragg Gratings. Sensors & Transducers, 27, n. 5, p. 62, 2014.

BHUSARI SHRADDHA, N.; DESHMUKH VIKAS, U.; JAGDALE SHANTANU, S. Analysis of SPM, XPM, and FWM in fiber optic comunication using optiSystem. IJSTE-International Journal of Science Technology & Engineering, 2, n. 07, 2016.

CONNOLLY, E.; KASZUBOWSKA-ANANDARAJAH, A.; BARRY, L. P.; DUNNE, J. et al. Cross-channel interference due to wavelength switching events in wavelength packed switched WDM networks. Optics communications, 267, n. 1, p. 88-91, 2006.

COSTA, U. W. d. C. Análise da influência do monitoramento OTDR em WDM-PON: um estudo baseado em simulação. Dissertação (mestrado) – Programa de Pós-Graduação em Engenharia Elétrica, Universidade Federal do Pará. Belém. 2013.

DE SOUSA, F. B.; DE OLIVEIRA, J. E.; DE SOUSA, F. M.; COSTA, M. B. C. et al. Michelson interferometer system with acoustic optic filter and fiber Bragg grating for reduction of four-wave mixing. Scientia Plena, 15, n. 7, 2019.

DE SOUSA, F. B.; DE SOUSA, F. M.; DE OLIVEIRA, J. E.; PASCHOAL, W. et al. Numerical analysis of the performance of a Mach–Zehnder interferometer based on acousto-optic filter for signal regeneration. Optical and Quantum Electronics, 52, n. 5, p. 1-12, 2020.

DIGGE, J.; RINDHE, B.; NARAYANKHEDKAR, S. Photonic crystal based arrayed waveguide grating demultiplexer for optical network. Int. J. Eng. Sci. Innov. Technol., 3, p. 358-368, 2014.

DOCKNEY, M. L.; JAMES, S. W.; TATAM, R. P. Fibre Bragg gratings fabricated using a wavelength tuneable laser source and a phase mask based interferometer. Measurement science and technology, 7, n. 4, p. 445, 1996.

DONG, Z.; LI, X.; YU, J.; CAO, Z. et al. 8 x 9.95-Gb/s Ultra-Dense WDM-PON on a 12.5-GHz Grid With Digital Pre-Equalization. IEEE Photonics Technology Letters, 25, n. 2, p. 194-197, 2012.

FALTAS, S. The invention of fibre‐optic communications. History and Technology, an International Journal, 5, n. 1, p. 31-49, 1988.

HILL, K. O.; FUJII, Y.; JOHNSON, D. C.; KAWASAKI, B. S. Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication. Applied physics letters, 32, n. 10, p. 647-649, 1978.

HOXHA, J. et al. FBG-and AWG-based AO-OFDM demultiplexing. In: 2015 International Conference on Photonics in Switching (PS). IEEE, p. 82-84, 2015.

KASHYAP, R. Fiber bragg gratings. Academic press, 2009.

KEISER, Gerd. Optical Fiber Communications. Mcgraw Hill. Fourth Edition, 2008.

LAM, D.; GARSIDE, B. K. Characterization of single-mode optical fiber filters. Applied optics, 20, n. 3, p. 440-445, 1981.

MISHRA, R.; SHUKLA, N.; DWIVEDI, C. A Comparative Performance Analysis of Optical Fiber System with FBG Compensated SMF for High Data Rate. Imperial Journal of Interdisciplinary Research, 2, n. 7, 2016.

OKAMOTO, Katsunari. Fundamentals of optical waveguides Photonic Networks. Chapter 9. Academic Press, 2000.

OLIVEIRA, Jackson Moreira et al. A new system for all-optical AND logic gate on semiconductor optical amplifier based Michelson. In: 2018 3rd International Symposium on Instrumentation Systems, Circuits and Transducers (INSCIT). IEEE, p. 1-6, 2018.

OTHMAN, M.; ISMAIL, M.; SULAIMAN, H.; MISRAN, M. et al. An analysis of 10 Gbits/s optical transmission system using fiber Bragg grating (FBG). IOSR Journal of Engineering (IOSRJEN), 2, n. 07, p. 55-61, 2012.

PROAKIS, John G.; SALEHI, Masoud. Digital communications. New York: McGraw-hill, 2001.

SMIT, M. K. New focusing and dispersive planar component based on an optical phased array. Electronics letters, 24, n. 7, p. 385-386, 1988.

SOUSA, Fabio B. de et al. All-optical 3R regeneration based on an acousto optical filter with Q-Factor improvement. Journal of Computational and Theoretical Nanoscience, v. 15, n. 6-7, p. 1871-1875, 2018.

YADAV, A.; JAISWAL, A.; NITIN, N. Comparative Analysis of AWG Demultiplexer and Chirped FBG based Demultiplexer in WDM PON Network. International Journal of Computer Applications, 121, n. 11, 2015.

ZHANG, X. and PENG, W. Fiber Bragg grating inscribed in dual-core photonic crystal fiber. IEEE Photonics Technology Letters, 27, n. 4, p. 391-394, 2014.

Downloads

Publicado

2022-03-03

Como Citar

Araujo de Oliveira , L. ., de Sousa, F., Moreira Oliveria, J. ., Afonso Batista da Silva, H. ., Everaldo de Oliveira, J. ., Pinho da Luz, F. ., Souza de Araújo , F. ., dos Reis Silva , A. ., & Benedito Caldas Costa , M. . (2022). Analysis of the performance of an All-optical Network using Arrayed Waveguide and Fiber Bragg Grating Demultiplexers . Conjecturas, 22(2), 442–459. https://doi.org/10.53660/CONJ-682-816

Edição

Seção

Artigos