Climate sensitivity in the northern high latitudes using the Brazilian Earth System Model

Autores

  • Fernanda Casagrande Instituto Nacional de Pesquisas Espaciais
  • Paulo Nobre
  • Ronald Buss de Souza
  • André Lanfer Marquez
  • Noele Franchi Leonardo
  • Rose Ane Pereira de Freitas
  • Regiane Moura
  • Vinícius Capistrano

DOI:

https://doi.org/10.53660/CONJ-260-107

Palavras-chave:

Climate change, Polar Amplification, Climate Models, Future Scenarios, CMIP

Resumo

An expressive number of scientific publications including the recent IPCC-AR6 report have warned about the effects of the ongoing and the projected climate change in the northern high latitudes as response to CO2 forcing. Here we investigate the response of the Arctic region to an increase in atmospheric CO2 concentration using the Brazilian Earth System Model (BESM-OA2.5) and other three state-of-the-art Global Climate Model from the CMIP5 project. We evaluated the Arctic climate sensitivity through the Polar amplification using two numerical experiments: (i) piControl numerical experiment and (ii) abrupt 4xCO2. Our results showed that the northern high latitudes are described as the most climatically sensitive areas of the world, with strongest warming occurring in winter (DJF) and autumn (SON). The Arctic climate sensitivity is linked to changes in sea ice extent and sea ice thickness. Considering this scenario, it is expected that the Arctic will become ice-free in summer time and covered only by first-year-sea ice in the remaining months. We suggest that the projected sea ice albedo feedback will reinforce the Arctic warming with lack of understanding effects beyond the Arctic region.

Downloads

Não há dados estatísticos.

Referências

ALEXEEV, V. A.; LANGEN, P. L.; BATES, J. R. Polar amplification of surface warming on an aquaplanet in “ghost forcing” experiments without sea ice feedbacks. Clim. Dynamics, v.24, n.7-8, p.655-666, 2005.

AMBAUM, M.; HOSKINS, B. J.; STEPHENSON, D. B. Arctic oscillation or North Atlantic oscillation? J. Clim., v.14, n.16, p.3495-3507, 2001.

BEKRYAEV, R. V.; POLYAKOV , I. V.; ALEXEEV, V. A. Role of polar amplification in long-term surface air temperature variations and modern Arctic warming. J. Clim., v.23, n.14, p.3888-3906, 2010.

BINTANJA, R.; VAN DER LINDEN, E. C. The changing seasonal climate in the Arctic. Scientific reports, v.3, 2013.

BINTANJA, R.; SELTEN, F. M. Future increases in Arctic precipitation linked to local evaporation and sea-ice retreat. Nature, v. 509, n. 7501, p. 479-482, 2014.

BOEKE, R. C.; TAYLOR, P. C.; SEJAS, S. A. On the Nature of the Arctic's Positive Lapse Rate Feedback. Geophys. Res. Lett, 48(1), e2020GL091109, 2021.

BOTTINO, M.; NOBRE, P. Impacts of Cloud Cover Schemes on the Atlantic Climate in the Brazilian Climate Model—BESM. “unpublished”, 2015.

BOURASSA, M. A.; GILLE, S. T.; BITZ, C.; CEROVECKI, I.; et al. High-latitude Ocean and Sea Ice Surface Fluxes: Challenges for Climate Research. American Meteorological Society, v.94, p.403-423, 2013.

CAI, M. Dynamical amplification of polar warming. Geophys. Res. Lett, v.22, 2005.

CAI, S., HSU, P. C.; LIU, F. Changes in polar amplification in response to increasing warming in CMIP6. 'Atmos. Ocean. Sci. Lett., 14(3), 100043, 2021.

CAI, Z. et al. Arctic warming revealed by multiple CMIP6 models: evaluation of historical simulations and quantification of future projection uncertainties. J. Clim., v. 34, n. 12, p. 4871-4892, 2021.

CASAGRANDE, F.; NOBRE, P.; SOUZA, R. B.; MARQUEZ, A. L.; TOURIGNY, E.; CAPISTRANO, V.; MELLO, R. L. Arctic sea ice: Decadal simulations and future scenarios using BESM-OA. Atmospheric and Clim. Sciences, 6(02), 351, 2016.

CASAGRANDE, F.; SOUZA, R. B.; NOBRE, P.; MARQUEZ, A. L. An inter-hemispheric seasonal comparison of polar amplification using radiative forcing of a quadrupling CO 2 experiment. In: Annales Geophysicae. Copernicus GmbH, p. 1123-1138, 2020.

CURRY, J.A.; SCHRAMM, J.L.; EBERT, E.E. Sea Ice Albedo Climate Feedback Mechanism. J. Clim., v.8, p.240-247, 1995.

DAI, A.; LUO, D.; SONG, M.; LIU, J. Arctic amplification is caused by sea-ice loss under increasing CO 2. Nature Communications, 10(1), 1-13, 2019.

DAVY, R.; OUTTEN, S. The Arctic surface climate in CMIP6: status and developments since CMIP5. J. Clim., 33(18), 8047-8068, 2020.

DELWORTH, T.L.; BROCCOLI, A.J.; ROSATI, A.; Stouffer, R.J.; Balaji, V.; Beesley, J.A.; et al. GFDL’s CM2 Global Coupled Climate Models. Part I: Formulation and Simulation Characteristics. J. Clim., v.19, p.643-674, 2006.

GENT, P.R.; DANABASOGLU, G.; DONNER, L.J.; HOLLAND, M.M.; HUNKE, E.C.; JAYNE, S.R., et al. The Community Climate System Model Version 4. J. Clim., v.24, p.4973-4991, 2011.

GOOSSE, H., et al. Quantifying climate feedbacks in polar regions. Nature Communications, 9(1), 1-13, 2018.

GRAVERSEN, R. G.; WANG, M. Polar Amplification in a Coupled Climate Model with Locked Albedo. Clim. Dynamics, v.33, n.5, p.629-643, 2009.

GRIFFIES, S.M. Elements of MOM4p1. NOAA/Geophysical Fluid Dynamics Laboratory Ocean Group Technical Report, n.6, p.444, 2009.

GRIFFIES, S.M.; WINTON, M.; DONNER, L.J.; HOROWITZ, L.W.; DOWNES, S.M.; FARNETI, R.; et al. The GFDL CM3 coupled climate model: characteristics of the ocean and sea ice simulations. J. Clim., v.24, p.3520-3544, 2011.

HALL, A. The role of surface albedo feedback in climate. J. Clim., v.17, n.7, p.1550-1568, 2004.

HOLLAND, M.M.; BITZ, C.M. Polar Amplification of Climate Change in the Coupled Model Intercomparison Project. Climate Dynamics, v.21, p.221-232, 2003.

HUNKE, E.C.; DUKOWICZ, J.K. An Elastic-Viscous-Plastic Model for Sea Ice Dynamics. Journal of Physical Oceanography, v.27, p.1849-1867, 1997.

HUUSKO, L. L.; BENDER, F. A.; EKMAN, A. M.; STORELVMO, T. Climate sensitivity indices and their relation with projected temperature change in CMIP6 models. Environ. Res. Lett., 2021.

IPCC, 2019: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate [H.-O. Pörtner, D.C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, N.M. Weyer (eds.)]. In press.

IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press. In Press.

JONKO, A. K., et al. Climate feedbacks in CCSM3 under changing CO2 forcing. Part I: Adapting the linear radiative kernel technique to feedback calculations for a broad range of forcings. J. Clim., v.25, n.15, p.5260-5272, 2012.

JUNG, E.; JEONG, J. H.; WOO, S. H.; KIM, B. M.; YOON, J. H.; LIM, G. H. Impacts of the Arctic-midlatitude teleconnection on wintertime seasonal climate forecasts. Environ. Res. Lett., 15(9), 094045, 2020.

KUG, J. S.; et al. Role of synoptic eddy feedback on polar climate responses to the anthropogenic forcing. Geophys. Res. Lett, v.37, n.14, 2010.

LI, J. L.; XU, K. M.; JIANG, J. H.; LEE, W. L.; WANG, L. C.; YU, J. Y.; WANG, Y. H. An Overview of CMIP5 and CMIP6 Simulated Cloud Ice, Radiation Fields, Surface Wind Stress, Sea Surface Temperatures, and Precipitation Over Tropical and Subtropical Oceans. J. Geophys. Res. Atmos., 125(15), e2020JD032848, 2020.

LIU, Y.; et al. A cloudier Arctic expected with diminishing sea ice. Geophys. Res. Lett, v.39, n.5, 2012.

MARSHALL, J.; et al. The ocean's role in polar climate change: asymmetric Arctic and Antarctic responses to greenhouse gas and ozone forcing. Phil. Trans. R. Soc. A.3722013004020130040, v.372, n.2019, 2014.

MARSLAND, S.J.; HAAK, H.; JUNGCLAUS, J.H.; LATIF, M.; RÖSKE, F. The Max-Planck-Institute Global Ocean/Sea Ice Model with Orthogonal Curvilinear Coordinates. Ocean Modelling, v.5, p.91-127, 2003.

NOBRE, P.; SIQUEIRA, L.S.; DE ALMEIDA, R.A.; MALAGUTTI, M.; GIAROLLA, E.; CASTELÃO, G.P.; et al. Climate Simulation and Change in the Brazilian Climate Model. J. Clim., v.26, p.6716-6732, 2013.

NORTH, G. R.; PYLE, J. A.; ZHANG, F. Encyclopedia of atmospheric sciences. Vol. 1. Elsevier, 2014.

NOTZ, D.; STROEVE, J. SIMIP Community, 2020: Arctic sea ice in CMIP6. Geophys. Res. Lett, 47, e2019GL086749, 2020.

O'NEILL, B. C., et al. The scenario model intercomparison project (ScenarioMIP) for CMIP6. Geosci. Model Dev., 9(9), 3461-3482, 2016.

OVERLAND, J.; DUNLEA, E.; BOX, J. E.; CORELL, R.; FORSIUS, M.; KATTSOV, V.; WANG, M. The urgency of Arctic change. Polar Science, 21, 6-13, 2019.

PITHAN, F.; MAURITSEN, T. Arctic Amplification Dominated by Temperature Feedbacks in Contemporary Climate Models. Nature Geoscience, v.7, p.181-184, 2014.

SCREEN, J. A.; SIMMONDS, I. The central role of diminishing sea ice in recent Arctic temperature amplification. Nature, v.464, n.7293, p.1334-1337, 2010.

SCREEN, J. A.; SIMMONDS, I. Increasing fall winter energy loss from the Arctic Ocean and its role in Arctic temperature amplification. Geophys. Res. Lett, v.37, n.16, 2010.

SCREEN, J. A.; WILLIAMSON, D. Ice-free Arctic at 1.5° C?. Nature Climate Change, 7(4), 230-231, 2017.

SEMTNER, A.J. A Model for the Thermodynamic Growth of Sea Ice in Numerical Investigations of Climate. J. Phys. Oceanogr., v.6, p.27-37, 1976.

SERREZE, M. C.; FRANCIS, J. A. The Arctic amplification debate. Climatic change, v.76, p.241-264, 2006.

SERREZE, M. C.; et al. The Emergence of Surface-Based Arctic Amplification. The Cryosphere, v.3, p.11-19, 2009.

SERREZE, M. C; BARRY, R.G. Processes and Impacts of Arctic Amplification: A Research Synthesis. Global and Planetary Change, v.77, p.85-96, 2011.

SHELL, K. M.; KIEHL, J. T.; SHIELDS, C. A. Using the radiative kernel technique to calculate climate feedbacks in NCAR's Community Atmospheric Model. J. Clim., v.21, n.10, p.2269-2282, 2008.

SHEN, Z.; DUAN, A.; LI, D.; & LI, J. Assessment and Ranking of Climate Models in Arctic Sea Ice Cover Simulation: From CMIP5 to CMIP6. J. Clim., 34(9), 3609-3627, 2021.

SHU, Q.; SONG, Z.; QIAO, F. Assessment of Sea Ice Simulations in the CMIP5 Models. The Cryosphere, v.9, p.399-409, 2015.

SHU, Q.; WANG, Q.; SONG, Z.; QIAO, F.; ZHAO, J.; CHU, M.; LI, X. Assessment of sea ice extent in CMIP6 with comparison to observations and CMIP5. Geophys. Res. Lett, 47(9), e2020GL087965, 2020.

SMITH, D. M., et al. The Polar Amplification Model Intercomparison Project (PAMIP) contribution to CMIP6: investigating the causes and consequences of polar amplification, Geosci. Model Dev., 12, 1139–1164, 2019.

SODEN, B. J., et al. Quantifying climate feedbacks using radiative kernels. J. Clim., v.21, n.14, p.3504-3520, 2008.

STÖSSEL, A.; ZHANG, Z.; VIHMA, T. The Effect of Alternative Realtime Wind Forcing on Southern Ocean Sea Ice Simulations, J. Geophys. Res., v.116, p.1–19, 2011.

STROEVE, J.; HOLLAND, M.M.; MEIER, W.; SCAMBOS, T.; SERREZE, M. Arctic Sea Ice Decline: Faster than Forecast. Geophys. Res. Lett, v.34, L09501, 2007.

STROEVE, J.; KATTSOV, V.; BARRETT, A.; SERREZE, M.; PAVLOVA, T.; HOLLAND, M.; MEIER, W.N. Trends in Arctic Sea Ice Extent from CMIP5, CMIP3 and Observations. Geophys. Res. Lett, v.39, L16502, 2012.

STUECKER, M. F., et al. Polar amplification dominated by local forcing and feedbacks, Nat. Clim. Change, 8, 1076–1081, 2018.

TAYLOR, K.E.; STOUFFER, R.J.; MEEHL, G.A. A Summary of the CMIP5 Experiment Design. CMIP Report, 30 p., 2009.

TAYLOR, K.E.; STOUFFER, R.J.; MEEHL, G.A. An Overview of CMIP5 and the Experiment Design. Bull. Amer. Meteor., v.93, p.485-498, 2012.

THACKERAY, C. W.; HALL, A. An emergent constraint on future Arctic sea-ice albedo feedback. Nature Climate Change, 9(12), 972-978, 2019.

VAVRUS, S. The Impact of Cloud Feedbacks on Arctic Climate under Greenhouse Forcing. J. Clim., v.17, n.3, p.603-615, 2004.

VEIGA, S. F.; NOBRE, P.; GIAROLLA, E.; CAPISTRANO, V.; BAPTISTA JR., M.; MARQUEZ, A. L.; FIGUEROA, S. N.; BONATTI, J. P.; KUBOTA, P.; NOBRE, C. A. The Brazilian Earth System Model ocean–atmosphere (BESM-OA) version 2.5: evaluation of its CMIP5 historical simulation, Geosci. Model Dev., 12, 1613–1642, 2019.

WEI, J.; WANG, Z.; GU, M.; LUO, J. J.; WANG, Y. An evaluation of the Arctic clouds and surface radiative fluxes in CMIP6 models. Acta Oceanologica Sinica, 40(1), 85-102, 2021.

WILD, M. The global energy balance as represented in CMIP6 climate models. Climate Dynamics, 55, 553-577, 2020.

WINTON, M. A Reformulated Three-Layer Sea Ice Model. J. Atmos. Ocean. Technol., v.17, p.525-531, 2000.

Downloads

Publicado

2021-11-05

Como Citar

Casagrande, F., Nobre, P., Buss de Souza, R., Lanfer Marquez, A., Franchi Leonardo, N., Ane Pereira de Freitas, R., Moura, R., & Capistrano, V. (2021). Climate sensitivity in the northern high latitudes using the Brazilian Earth System Model. Conjecturas, 21(5), 192–211. https://doi.org/10.53660/CONJ-260-107

Edição

Seção

Artigos