Determinação de cafeína em bebidas, alimentos e medicamentos utilizando o smartphone e software para computador

Autores

DOI:

https://doi.org/10.53660/CONJ-1785-2L14

Palavras-chave:

Cafeína; ImageJ; Smartphone; Cromatografia; Espectrofotômetro

Resumo

A cafeína é um alcaloide de ocorrência natural nas folhas e sementes de muitas plantas geralmente adicionadas a medicamentos, alimentos e produtos de bebidas, sendo uma das substâncias psicoativas mais consumidas no mundo. O consumo mundial per capita tem aumentado através do consumo de bebidas energéticas, medicamentos, chá verde, erva-mate e principalmente, do café. Brasil é líder mundial na produção e exportação de grãos de café. Desta forma, o presente estudo visa analisar e quantificar a presença de cafeína em amostras de café nos diferentes estágios de maturação, chá verde, erva-mate e medicamentos através da técnica de cromatografia em camada delgada (CCD). O smartphone foi utilizado para captura das manchas nas placas de CCD e o tratamento de imagens digitais foi feito a partir do uso de software computacional ImageJ. Os resultados das análises e quantificação foram comparados com os resultados no espectrofotômetro de UV-visível. Os resultados observados nos processos avaliativos foram satisfatórios o que valida a técnica simples e rápida para determinação de cafeína em amostras naturais e em formulações

Downloads

Não há dados estatísticos.

Referências

ALMEIDA, G.A.; DEMUNER, A.J.; BLANK, D.E.; CERCEAU, C.I.; SOUSA, B.L.; DEMUNER, I.F.; COURA, M.R.; FIRMINO, M.J.M.; SANTOS, M.H. An Alternative and Fast Method of Nitrite Determination in Meat Sausages Using the PhotoMetrix® Smartphone Applicative for Digitized Image Processing. Open Access Library Journal, v. 9, p.1-10, 2022. doi: 10.4236/oalib.1108689.

BAZANI, E.J.O.; BARRETO, M.S.; DEMUNER, A.J.; SANTOS, M.H.; CERCEAU, C.I.; BLANK, D.E.; FIRMINO, M.J.M.; SOUZA, G.S.F.; FRANCO, M.O.K.; SUAREZ, W.T.; STRINGHETA, P.C. Smartphone Application for Total Phenols Content and Antioxidant Determination in Tomato, Strawberry, and Coffee Employing Digital Imaging. Food Analytical Methods, v.14, p.631–640, 2021. https://doi.org/10.1007/s12161-020-01907-z

GONZALEZ R.C. & WOODS R.E. Processamento Digital de Imagens 3 ed. [S.l.]: Pearson, 2009.

BHAWANI, S. H.; FONG, S. S.; IBRAHIM, M. N. M. Spectrophotometric analysis of caffeine. International Journal of Analytical Chemistry, v.5, p.1–7, 2015. https://doi.org/10.1155/2015/170239.

CHRISTIAN, M. S. & BRENT, R. L. Teratogen update: Evaluation of the reproductive and developmental risks of caffeine. Teratology, v.64, p.51–78, 2001. https://doi.org/10.1002/tera.1047

ZAGNONI, P. G., & ALBANO, C. (2002). Psychostimulants and epilepsy. Epilepsia, v.43, p.28–31. https://doi.org/10.1046/j.1528-1157.2002.043s2028.x

ROSTAGNO, M. A.; MANCH ́ON, N.; D’ARRIGO, M.; GUILLAM ́ON, E.; VILLARES, A.; GARCÍA- LAFUENTE, A.; MARTÍNEZ, J. A. (2011). Fast and simultaneous determination of phenolic compounds and caffeine in teas, mate, instant coffee, soft drink and energetic drink by high-performance liquid chromatography using a fused-core column. Analytica Chimica Acta, v.685, p.204–211. https://doi.org/10.1016/j. aca.2010.11.031.

AMOS-TAUTUA, BAMIDELE MARTIN W.; DIEPREYE E.R.E. Ultra-violet spectrophotometric determination of caffeine in soft and energy drinks available in Yenagoa, Nigeria. Advance Journal of Food Science and Technology Open Access, v.6, p.155 – 158, 2014. https://doi.org/10.19026/ajfst.6.2

TRIPETCH, P. & BOROMPICHAICHARTKUL, C. (2019). Effect of packaging materials and storage time on changes of colour, phenolic content, chlorogenic acid and antioxidant ac-tivity in arabica green coffee beans (Coffea arabica L. cv. Catimor). Journal of Stored Products Research, v.84, Article 101510. https://doi.org/10.1016/j.jspr.2019.101510.

ICO. (2020). International Coffee Organization. Historical Data on the Global Coffee Trade. http://www.ico.org/new_historical.asp?section=Statistics. Accessed 21 January 2020.

ALHAIDER, I. A.; ALEISA, A. M.; TRAN, T. T.; ALZOUBI, K. H.; ALKADHI, K. A. Chroniccaffeine treatment prevents sleep deprivation-induced impairment of cognitivefunction and synaptic plasticity. Sleep, v.33, p.437–444, 2010 10.1093/sleep/33.4.437

DUARTE, J. M.; CARVALHO, R. A.; CUNHA, R. A.; GRUETTER, R. (2009). Caffeine consumption attenuates neurochemical modifications in the hippocampus of streptozotocin-induced diabetic rats. Journal of Neurochemistry, v.111, p.368–379, 2009. https://doi.org/10.1111/j.1471-4159.2009.06349.x

SPINETTA, M. J.; WOODLEE, M. T.; FEINBERG, L. M.; STROUD, C.; SCHALLERT, K.; CORMACK, L. K.; SCHALLERT, T. Alcohol-induced retrograde memory impairment in rats: prevention by caffeine. Psychopharmacology (Berlin), v.201, p. 361–371, 2008. 10.1007/s00213-008-1294-5

GEVAERD, M. S.; TAKAHASHI, R. N.; SILVEIRA, R.; DA CUNHA, C. Caffeine reversesthe memory disruption induced by intra-nigral MPTP-injection in rats. Brain Research Bulletin, v.55, p.101–106, 2001. https://doi.org/10.1016/s0361-9230(01)00501-9

ANDREWS, K. W.; SCHWEITZER, A.; ZHAO, C.; HOLDEN, J. M.; ROSELAND, J. M.; BRANDT, M. The caffeine contents of dietary supplements commonlypurchased in the US: Analysis of 53 products with caffeine-containingingredients. Analytical and Bioanalytical Chemistry, v.389, p.231–239, 2007. 10.1007/s00216-007-1437-2

FINNEGAN, D. The health effects of stimulant drinks. Nutrition Bulletin, v.28, p.147–155, 2003. https://doi.org/10.1046/j.1467-3010.2003.00345.x

RIKSEN, N. P.; SMITS, P.; RONGEN, G. A. The cardiovascular effects ofmethylxanthines. Handbook of Experimental Pharmacology, v.200, p.413–437, 2001. https://doi.org/10.1007/978-3-642-13443-2_16

BÖCK, F. C.; HELFER, G. A.; DA COSTA, A. B.; DESSUY, M. B.; FERRAO, M. F. Photometrix and colorimetric image analysis using smartphones. Journal of Chemometrics. 2020; e3251. https://doi.org/10.1002/cem.3251

SOARES, S.; NUNES, L. C.; MELCHERT, W. R.; ROCHA, F. R. P. Spot test exploiting smartphone-based digital images for determination of biodiesel in diesel blends. Microchemical Journal. v. 152, 104273, 2020. https://doi.org/10.1016/j.microc.2019.104273

PAPPIS, C.; LIBRELOTTO, M.; BAUMANN, L. Point-of-use determination of fluoride and phosphorus in water through a smartphone using the Photometrix ® App. Brazilian Journal of Analytical Chemistry. v. 6, n. 25, p. 1-9, 2019. https://doi.org/10.30744/brjac.2179-3425.TN-25-2019

COSTA, V.; NEIVA, A.; PEREIRA-FILHO, E. Chromium speciation in leather samples: an experiment using digital images, mobile phones and environmental concepts. Eclética Química J. v. 44, n. 1, p.62-74, 2019. https://doi.org/10.26850/1678-4618eqj.v44.1

MOHAN, P. J.; GUPTA, S.D. Intelligent image analysis for retrieval of leaf chlorophyll content of rice from digital images of smartphone under natural light. Photosynthetica. v. 57, n. 2, p. 388-398, 2019. https://doi.org/10.32615/ps.2019.046

CERRATO-ALVAREZ, M.; FRUTOS-PUERTO, S.; MIRO-RODRÍGUEZ, C.; PINILLA-GIL, E. Measurement of tropospheric ozone by digital image analysis of indigotrisulfonate-impregnated passive sampling pads using a smartphone camera. Microchem Journal 154:104535, 2020. https://doi.org/10.1016/j.microc.2019.104535.

LI, C.; ADHIKARI, R.; YAO, Y. Measuring plant growth characteristics using smartphone based image analysis technique in controlled environment agriculture. Computers and Electronics in Agriculture. v. 168, 105123. 2020. https://doi.org/10.1016/j.compag.2019.105123

LOPEZ-MOLINERO, A.; LIÑAN, D.; SIPIERA, D.; FALCON, R.; Chemometric interpretation of digital image colorimetry. Application for titanium determination in plastics, Microchemical Journal, v. 96, p. 380-385, 2010. https://doi.org/10.1016/j.microc.2010.06.013

LYRA, W. S.; SANTOS, V. B.; DIONÍZIO, A. G. G.; MARTINS, V. L.; ALMEIDA, L. F.; NÓBREGA-GAIÃO, E.; DINIZ, P. H.; SILVA, E. C.; ARAÚJO, M. C. Digital image based flame emission spectrometry, Talanta, v. 77, p. 1584-1589, 2009. https://doi.org/10.1016/j.talanta.2008.09.057

LYRA, W. S.; SANCHES, F. A. C.; CUNHA, F. A. S.; DINIZ, P. H. G. D.; LEMOS, S. G.; SILVA, E. C.; ARAUJO, M. C. U. Indirect determination of sodium diclofenac, sodium dipyrone and calcium gluconate in injection drugs using digital image-based (webcam) flame emission spectrometric method. Analytical Methods, v. 3, p. 1975-1980, 2011. https://doi.org/10.1039/C1AY05197K

KOHL, S. K.; LANDMARK, J. D.; STICKLE, D. F. Demonstration of absorbance using digital color image analysis and colored solutions, Journal Chemical Education, v. 83, n. 4, p. 644-646, 2006. https://doi.org/10.1021/ed083p644

HELFER, G.A.; MAGNUS V.S., BÖCK F.C.; TEICHMANN A.; FERRAO M.F. DA COSTA A. B. PhotoMetrix: an application for univariate calibration and principal components analysis using colorimetry on mobile devices. Journal of the Brazilian Chemical Society. v.28, p.2, 2017. doi:https://doi.org/10.5935/0103-5053.20160182

SANTOS, L.; DEMUNER, A.; BLANK, D.; CERCEAU, C.; DEMUNER, I.; COURA, M.; FIRMINO, M.; SANTOS, M.; MOURA, N. An Alternative Tool for Determining Flavonoid Compounds in Markhamia tomentosa and Bunchosia glandulifera Using Digital Image Analysis. Open Journal of Applied Sciences, 12, 714-722, 2022. doi: 10.4236/ojapps.2022.125048.

Downloads

Publicado

2022-10-12

Como Citar

Albino, S. M. ., Demuner, A. J. ., dos Santos, M. H. ., Cerceau, C. I. ., Blank, D., & Castro, C. . (2022). Determinação de cafeína em bebidas, alimentos e medicamentos utilizando o smartphone e software para computador . Conjecturas, 22(14), 479–492. https://doi.org/10.53660/CONJ-1785-2L14