Hydrocarbonoclastic activity in bacterial biofilms: A systematic study emphasizing pseudomonads

Autores

DOI:

https://doi.org/10.53660/CONJ-1568-2D01

Palavras-chave:

Biorremediação mediada por biofilme, Hidrocarbonetos do petróleo, Pseudomonas aeruginosa

Resumo

Pseudomonas aeruginosa é uma pseudomonada fluorescente ubíqua, em forma de bastonete, com alta capacidade metabólica e potencial para aplicação em processos de remoção de compostos recalcitrantes do ambiente, tais como hidrocarbonetos de petróleo (HCP). A bactéria persiste em locais com pressões altamente seletivas, como os contaminados por estes compostos. Uma das estratégias da bactéria é colonizar biofilmes, pelos quais a proteção contra compostos tóxicos é aumentada, favorecendo a absorção do óleo. Ela é a bactéria mais prevalente em locais impactados pelo HCP porque utiliza hidrocarbonetos alifáticos para formar biofilmes, bem como outros metabólitos cruciais para a absorção e degradação do petróleo bruto. Assim, P. aeruginosa pode ser útil na biorremediação mediada por biofilme; entretanto, tem sido pouco explorada nos últimos dez anos. Este estudo sistemático aborda pesquisas recentes sobre a aplicação de biofilmes de P. aeruginosa/pseudomonadas na biorremediação. Os estudos foram asiáticos e africanos e enfatizaram a formação de biofilme por P. aeruginosa e outras pseudomonadas como elementos cruciais no processo de desintoxicação do ambiente.

Downloads

Não há dados estatísticos.

Referências

AL-MAILEM, D.M.; KANSOUR, M.K.; RADWAN, S.S. Bioremediation of hydrocarbons contaminating sewage effluent using man-made biofilms: effects of some variables. Appl Biochem Biotechnol. v. 174, n. 5, p. 1736-1751, 2014. Doi:10.1007/s12010-014-1067-z.

AMER, R.A.; MAPELLI, F.; EL GENDI, H.M.; BARBATO, M.; GODA, D.A.; CORSINI, A.; CAVALCA, L.; FUSI, M.; BORIN, S.; DAFFONCHIO, D.; ABDEL-FATTAH, Y.R. Bacterial diversity and bioremediation potential of the highly contaminated marine sediments at El-Max District (Egypt, Mediterranean sea). BioMed Res Int. v. 2015, n. 981829, 2015. Doi:10.1155/2015/981829.

BAIG, Z.T.; ABBASI, S.A; MEMON, A.G.; NAZ, A.; SOOMRO, A.F. Assessment of degradation potential of Pseudomonas species in bioremediating soils contaminated with petroleum hydrocarbons. J Chem Technol Biotechnol. v. 97, n. 2, p. 455-465, 2021. Doi:10.1002/jctb.6820.

BARRON, M.G.; VIVIAN, D.N.; HEINTZ, R.A.; YIM, U.H. Long-term ecological impacts from oil spills: comparison of Exxon Valdez, Hebei Spirit and Deepwater Horizon Marine Oil Spills—Oil Pollution, Sources and Effects. Environ Sci Technol. v. 54, n. 11, p. 6456-6467, 2020.

BOLES, B.R.; THOENDEL, M.; SINGH, P.K. Self-generated diversity produces “insurance effects” in biofilm communities. PNAS. v. 2004, n. 101, p. 16630–16635, 2004.

BRAZILIAN MINISTRY OF HEALTH. Methodological guideline: Development of systematic review and meta-analysis of randomized clinical trials. MS: Brasília; 2012. p. 13-92.

CAVALCANTI, T.G.; SOUZA, A.F.; FERREIRA, G.F.; DIAS, D.S.B.; SEVERINO, L.S.; MORAIS, J.P.S.; SOUSA, K.A.; VASCONCELOS, U. Use of agro-industrial waste in the removal of phenanthrene and pyrene by microbial consortia in soil. Waste Biomass Valor. v. 10, n. 1, p. 205-214, 2019.

CENTLER, F.; GÜNNIGMANN, S.; FETZER, I.; WENDEBER, A. Keystone species and modularity in microbial hydrocarbon degradation uncovered by network analysis and association rule mining. Microorganisms. v. 8, n. 2, p. 190, 2020. Doi:10.3390/microorganisms8020190.

CHATERJEE, P.; DAVIS, E.; YU, F.; JAMES, S.; WILDSCHUTTE, J.H.; WIEGMANN, D.D.; SHERMAN, D.H.; McKAY, R.M.; LIPUMA, J.J.; WILDSCHUTTE, H. Environmental pseudomonads inhibit cystic fibrosis patient-derived Pseudomonas aeruginosa. Environ Microbiol. v. 83, n. 2, p. e02701-16, 2017. Doi:10.1128/AEM.02701-16.

CHEN, Q.; LI, J.; LIU, M.; SUN, H.; BAO, M. Study on the biodegradation of crude oil by free and immobilized bacterial consortium in marine environment. PlosOne. v. 12, n. 3, p. e0174445, 2017. Doi:10.1371/journal.pone.0174445.

CHEN, X.; SUWARNO, S.R.; CHONG, T.H.; McDOUGALD, D.; KJELLEBERG, S.; COHEN, Y.; FANE, A.G.; RICE, SA. Dynamics of biofilm formation under different nutrient levels and the effect on biofouling of a reverse osmosis membrane system. Biofouling. v. 29, p. 319–330, 2013.

CHIKERE, C.B.; CHIKERE, B.O.; OKPOKWASILI, G.C. Bareactor-based bioremediation of hydrocarbon-polluted Niger Delta marine sediment, Nigeria. 3Biotech. v. 2, p. 53-66, 2012. Doi:10.1007/s13205-011-0030-8.

COSTERTON, J.W. Introduction to biofilm. Int J Antimicrob Agents. v. 11, p. 217–221, 1999.

DASHITI, N.; ALI, N.; ELIYAS, M.; KHANAFER, M.; SORKHOH, N.A.; RADWAN, S.S. Most hydrocarbonoclastic bacteria in the total environment are diazotrophic, which highlights their value in the bioremediation of hydrocarbon contaminants. Microb Environ. v. 30, p. 70-75, 2015.

DELIGANNI, E.; PATTISON, S.; BERRAR, D.; TERNAN, N.G.; HAYLOCK, R.W; MOORE, J.E.; ELBORN, S.J.; DOOLEY, J.S.G. Pseudomonas aeruginosa cystic fibrosis isolates of similar RAPD genotype exhibit diversity in biofilm forming ability in vitro. BMC Microbiol. v. 10, n. 38, 2010. Doi:10.1186/1471-2180-10-38.

DOURADO, R.; GUEDES, T.P., BONIFACIO, T.T.C.; CAVALCANTI, T.G.; TRAVASSOS, R.A.; VASCONCELOS, U. Determination of microbial conatmiants recoverde from Brazilian petrol stations. Rev Mex Ing Quim. v. 16, n. 3, p. 983-990, 2018.

EDWARDS, S.J.; KJELLERUP, B.V. Applications of biofilms in bioremediation and biotransformation of persistent organic pollutants, pharmaceuticals/personal care products, and heavy metals. Appl Microbiol Biotechnol. v. 97, p. 9909-9921, 2013.

FRIMMERSDORF, E.; HORATZEK, S.; PELNIKEVICH, A.; WIEHLMANN, L.; SCHOMBURG, D. How Pseudomonas aeruginosa adapts to various environments: a metabolomic approach. Environ Microbiol. v. 12, n. 6, p. 1734-1747, 2010.. Doi:10.1111/j.1462-2920.2010.02253.x.

FUENTES, S.; MÉNDEZ, V.; AGUILA, P.; SEEGER, M. Bioremediation of petroleum hydrocarbons: catabolic genes, microbial communities, and applications. Appl Microbiol Biotechnol. v. 98, n. 11, p. 4781-4794, 2014.

GONÇALVES, T.; VASCONCELOS, U. Colour me blue: the history and the biotechnological potential of pyocyanin. Molecules. v. 26, n. 47, p. 927, 2021. Doi:10.3390/molecules26040927.

GOOGLE SCHOLAR. Available at: <https://scholar.google. com>.

HASSANSHAHIAN, M. ; AMIRINEJAD, N. ; BEHZADI, M.A. Crude oil pollution and biodegradation at the Persian Gulf: A comprehensive and review study. J Environ Health Sci Eng. v. 18, p. 1415-1435, 2020.

KERSTERS, K.; LUDWIG, W.; VANCANNEYT, M.; de VOS, P.; GILLIS, M.; SCHLEIFER, K-H. Recent changes in the classification of the pseudomonads: An overview. Syst Appl Microbiol. v. 19, p. 465–477, 1996.

LAHIRI, D.; NAG, M.; DEY, A.; SARKAR, T.; JOSHI, S.; PANDIT, S.; DAS, A.P.; PATI, S.; PATTANAIK, S.; TILAK, V.K.; RAY, R.R. Biofilm mediated degradation of petroleum products. Geomicrobiol J. v. 39, n. 3-5, p. 389-398, 2021. Doi:10.1080/01490451.2021.1968979.

ŁAWNICZAK, L.; WOŹNIAK-KARCZEWSKA, M.; LOIBNER, A.P.; HEIPIEPER, H.J.; CHRZANOWSKI, L. Microbial degradation of hydrocarbons—basic principles for bioremediation: a review. Molecules. v. 25, n. 4, p. 856, 2020. Doi:10.3390/molecules25040856.

LI, S.; QIAN, K.; WANG, S.; LIANG, K.; YAN, W. Polypyrrole-grafted coconut shell biological carbon as a potential adsorbent for methyl tert-butyl ether removal: characterization and adsorption capability. Int J Environ Res Public Health. v. 14, p. 113, 2017. Doi:10.3390/ijerph140220113.

LIMONGI, R.; OLIVEIRA, B.T.M.; GERVAZIO, K.Y.; MORAIS, V.C.; BARBOSA, P.S.Z.; CAVALCANTI, T.G.; VASCONCELOS, U.; AMARAL, I.P.G. Biodegradation of pyrene and anthracene by Pseudomonas aeruginosa TGC-02 in submerged culture. Int J Eng Res Appl. V 10, n. 6, p. 12-20, 2020.

MAVRODI, D.V.; BLANKENFELDT, W.; THOMASHOW, L.S. Phenazine compounds in fluorescent Pseudomonas spp. biosynthesis and regulation. Annu Rev Phytopathol. v. 44, p. 417-445, 2006.

McGENITY, T.J.; FOLWELL, B.D.; McKEW, B.A.; SANNI, G.O. Marine crude-oil biodegradation: a central role for interspecies interactions. Aquatic Biosystem. v. 8, p. 10, 2012. Doi:10.1186/2046-9063-8-10.

MITRA, A.; MUKHOPADHYAY, S. Biofilm mediated decontamination of pollutants from the environment. AIMS Bioeng. v. 3, n. 1, p. 44-59, 2016.

MORADALI, M.F.; GHODS, S.; REHM, B.H.A. Pseudomonas aeruginosa lifestyle: A paradigm for adaptation, survival, and persistence. Front Cell Infect Microbiol. v. 7, p. 39, 2017. Doi:10.3389/fcimb.2017.000399.

NCBIO – NATIONAL CENTER FOR BIOTECHNOLOGY INFORMATION. Available at: <https://www.ncbi.nlm.nih.gov/>.

PALLERONI, N.J. The Pseudomonas story. Environ Microbiol. v. 12, n. 6, p. 1377-1383, 2010. Doi:10.1111/j.1462-2920.2009.02041.x.

PASSOS DA SILVA, D.; SCHOFIELD, M.C.; PARSEK, M.R.; TSENG, B.S. An update on the sociomicrobiology of quorum sensing in Gram-negative biofilm development. Pathogens. v. 6, n. 4, p. 51, 2017. Doi:10.3390/pathogens6040051.

PATHAK, M.; SARMA, H.K.; BHATTACHARYYA, K.G.; SUBUDHI, S.; BISHT, V.; LAL, B.; DEVI, A. Characterization of a novel polymeric bioflocculant produced from bacterial utilization of n-hexadecane and its application in removal of heavy metals. Front Microbiol. v. 8, p. 70, 2017. Doi:10.3389/fmicb.2017.00170.

PERIÓDICOS CAPES. Available at: <https://www-periodicos-capes-gov-br.ez15.periodicos.capes.gov.br/index.php#>.

RADWAN, S.; MAHMOUD, H.; KHANAFER, M.; AL-HABIB, A.; AL-HASAN, R. Identities of epilithic hydrocarbon-utilizing diazotrophic bacteria from the Arabian Gulf coasts, and their potential for oil bioremediation without nitrogen supplementation. Microb Ecol. v. 60, n. 2, p. 354–363, 2010. Doi:10.1007/s00248-010-9702-x.

RODRIGUEZ, S.; BISHOP, P. Enhancing the biodegradation of polycyclic aromatic hydrocarbons: effects of nonionic surfactant addition on biofilm function and structure. J Environ Eng. v. 134, p. 505–512, 2008.

SARKAR, S.; CHAKRABORTY, R. Quorum sensing in metal tolerance of Acinetobacter junii BB1A is associated with biofilm production. FEMS Microbiol Lett. v. 282, p. 160–165, 2008.

SAYED, K.; BALOO, L.; SHARMA, N.K. Bioremediation of total petroleum hydrocarbons (TPH) by bioaugmentation and biostimulation in water with floating oil spill containment booms as bioreactor basin. Int J Environ Res Public Health. v. 18, n. 5, p. 2226, 2021. Doi:10.3390/ijerph18052226.

SHIN, B.; BOCIU, I.; KOLTON, M.; HUETTEL, M.; KOSTKA, J.E. Succession of microbial populations and nitrogen-fixation associated with the biodegradation of sediment-oil-agglomerates buried in a Florida sandy beach. Sci Rep. v. 9, p. 19401, 2019. Doi:10.1038/s41598-019-55625-6.

SINGH, R.; PAUL, D.; JAIN, R.K. Biofilms: implications in bioremediation. Trend Microbiol. v. 14, n. 9, p. 389-397, 2006.

THI, M.T.T, Wibowo D, Rehm BHA. Pseudomonas aeruginosa biofilms. Int J Molec Sci. v. 21, n. 22, p. 8671, 2020. Doi:10.3390/ijms21228671.

VARJANI, S.J. Microbial degradation of petroleum hydrocarbons. Bioresour Technol. v. 223, n. 1, p. 277-286, 2017.

VERHAGEN, P.; de GELDER, L.; HOEFMAN, S.; de VOS, P.; BOON, N. Planktonic versus biofilm catabolic communities: importance of the biofilm for species selection and pesticide degradation. Appl Environ Microbiol. v. 77, p. 4728–4735, 2011.

VIANA, A.A.G.; OLIVEIRA, B.T.M.; CAVALCANTI, T.G.; SOUSA, K.A.; MENDONÇA, E.A.M.; AMARAL, I.P.G.; VASCONCELOS, U. Correlation between pyocyanin production and hydrocarbonoclastic activity in nine strains of Pseudomonas aeruginosa. Int J Adv Eng Res Sci. v.5, n. 7, p. 212-223, 2018.

WANG, Y.; OYAIZU, H. Enhanced remediation of dioxins-spiked soil by a plant–microbe system using a dibenzofuran-degrading Comamonas sp. and Trifolium repens. Chemosphere. v. 85, p. 1109-1114, 2011.

WOLCOTT, R.; COSTERTON, J.W.; RAOULT, D.; CUTLER, S.J. The polymicrobial nature of biofilm infection. Clin Microbiol Infect. v. 19, p. 107–112, 2013.

WU, T.; XU, J.; XIE, W.; YAO, Z.; YANG, H.; SUN, C.; LI, X. Pseudomonas aeruginosa L10: A hydrocarbon-degrading, biosurfactant-producing, and plant growth-promoting endophytic bacterium isolated from a reed (Phragmites australis). Front Microbiol. v. 9, p. 1087, 2018. Doi:10.3389/fmicb.2018.01087.

XU, X.; LIU, W.; TIAN, S.; WANG, W.; QI, Q.; JIANG, P.; GAO, X.; LI, F.; LI, H.; YU, H. Petroleum hydrocarbon-degrading bacteria for the remediation of oil pollution under aerobic conditions: a perspective analysis. Front Microbiol. v. 9, p. 2885, 2018. Doi:10.3389/fmicb.2018.02885

Downloads

Publicado

2022-09-05

Como Citar

Norat, C. E. T. ., Pragana, L. G., Jaramillo, L. Y. A. ., Travassos, R. de A., & Vasconcelos, U. (2022). Hydrocarbonoclastic activity in bacterial biofilms: A systematic study emphasizing pseudomonads. Conjecturas, 22(12), 548–562. https://doi.org/10.53660/CONJ-1568-2D01

Edição

Seção

Artigos